
The Tix Widget Set

Tix Group,
http://tix.sourceforge.net

November 29, 2001.

1

http://tix.sourceforge.net

CONTENTS i

Contents

1 Introduction 1
1.1 Installing Tix . 1
1.2 Using Tix with Python . 2

2 Tix Widget Set 3
2.1 Tix Widgets . 3
2.2 Tix Commands . 7

3 Tix Object Oriented Programming 9
3.1 Widget Classes and Widget Instances. 9
3.2 Widget Class Declaration . 11
3.3 Writing Methods . 13
3.4 Standard Initialization Methods. 14
3.5 Declaring and Using Variables. 16

4 Using Tix with Python 20
4.1 Freezing Tix Programs. 21

1 INTRODUCTION 1

1 Introduction

The Tix (Tk Interface Extension) library provides an additional rich set of wid-
gets to Tk/Tkinter. Although the standard Tk library has many useful widgets,
they are far from complete. The Tix library provides most of the commonly
needed widgets that are missing from standard Tk:FileSelectBox , Com-
boBox , Control (a.k.a. SpinBox) and an assortment of scrollable widgets. Tix
also includes many more widgets that are generally useful in a wide range of ap-
plications: NoteBook , FileEntry , PanedWindow , etc. Figure 2 shows all
of the Tix widgets — there are more than 40 of them.

With all these new widgets, you can introduce new interaction techniques into
applications, creating more useful and more intuitive user interfaces. You can
design your application by choosing the most appropriate widgets to match the
special needs of your application and users. In section 2, we review all of the
widgets added by Tix. In section 3, we look at the simple object oriented class
structure used to create the widgets added by Tix.

1.1 Installing Tix

To install Tix, consult the documentation in thedocsdirectory in the Tix source
distribution. You will want to look at:

• TheTix Installation Guide

• TheRelease Notes

To build Tix from source, you will require an installation of Tcl and Tk; see
theActiveState Tcl Home Page.

http://tix.sourceforge.net/dist/current/docs/
http://tix.sourceforge.net/dist/current/docs/Install.html
http://tix.sourceforge.net/dist/current/docs/Release.html
http://tcl.activestate.com/

1 INTRODUCTION 2

1.2 Using Tix with Python

Classes in the Tix module subclass the classes in theTkinter module. The
former imports the latter, so to use Tix with Tkinter, all you need to do is to
import one module. In general, you can just import Tix, and replace the toplevel
call toTkinter.Tk with Tix.Tk :

import Tix
from Tkconstants import *
root = Tix.Tk()

To use Tix, you must have the Tix widgets installed, usually alongside your
installation of the Tk widgets. To test your installation, try the following:

import Tix
root = Tix.Tk()
root.tk.eval(’package require Tix’)

If this fails, you have a Tk installation problem which must be resolved be-
fore proceeding. Use the environment variableTIX_LIBRARY to point to the
installed Tix library directory, and make sure you have the dynamic object li-
brary (‘tix8183.dll’ or ‘ libtix8183.so’) in the same directory that contains your Tk
dynamic object library (‘tk8183.dll’ or ‘ libtk8183.so’). The directory with the dy-
namic object library should also have a file called ‘pkgIndex.tcl’ (case sensitive),
which contains the line:

package ifneeded Tix 8.1 \
[list load "[file join $dir tix8183.dll]" Tix]

2 TIX WIDGET SET 3

2 Tix Widget Set

2.1 Tix Widgets

Tix introduces over 40 widget classes to theTk /Tkinter repertoire. In theTix
distribution, there is a demo of all the Tix widgets in the ‘demos’ directory; in the
Pythonstandard distribution they are in the ‘Demo/tix’ directory.

For a more detailed description of the widgets, consult themanual pages.

2.1.1 Basic Widgets

tixBalloon a balloon that pops up over a widget to provide help. The Balloon
widget can be used to show popped-up messages that describe the functions
of the widgets in an application. When the user moves the cursor inside a
widget to which a Balloon widget has been bound, a small pop-up window
with a descriptive message will be shown on the screen.

tixButtonBox The ButtonBox widget creates a box of buttons, such as is com-
monly used forOk Cancel .

tixComboBox The Tix ComboBox widget is similar to the combo box control
in MS Windows. The user can select a choice by either typing in the entry
subwdget or selecting from the listbox subwidget.

tixControl The Control widget is also known as theSpinBox widget. The user
can adjust the value by pressing the two arrow buttons or by entering the
value directly into the entry. The new value will be checked against the
user-defined upper and lower limits.

tixLabelEntry The LabelEntry widget packages an entry widget and a label into
one mega widget. It can be used be used to simplify the creation of “entry-
form" type of interface. In this kind of interface, one must create many entry
widgets with label widgets next to them and describe the use of each of the
entry widgets.

tixLabelFrame The LabelFrame widget packages a frame widget and a label into
one mega widget. To create widgets inside a LabelFrame widget, one must
create the new widgets relative to theframe subwidget and manage them
inside theframe subwidget.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/TixIntro.htm
http://tix.sourceforge.net
http://tix.sourceforge.net
http://python.sourceforge.net
http://tix.sourceforge.net/dist/current/man/html/TixCmd/contents.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixBalloon.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixButtonBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixComboBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixControl.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixLabelEntry.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixLabelFrame.htm

2 TIX WIDGET SET 4

tixMeter The Meter widget can be used to show the pregress of a background
job which may take a long time to execute.

tixOptionMenu The OptionMenu creates a menu button of options.

tixPopupMenu The Tix PopupMenu widget can be used as a replacement of the
tk_popup command.

tixSelect The Select widget is a container of button subwidgets. It can be used to
provide radio-box or check-box style of selection options for the user.

tixStdButonBox The StdButonBox widget is a group of standard buttons for
Motif-like dialog boxes.

2.1.2 File Selectors

tixDirList The DirList widget displays a list view of a directory, its previous di-
rectories and its sub-directories. The user can choose one of the directories
displayed in the list or change to another directory.

tixDirTree The DirTree widget displays a list view of a directory, its previous
directories and its sub-directories, as a tree. The user can choose one of the
directories displayed in the list or change to another directory.

tixDirSelectDialog The DirSelectDialog widget presents the directories in the
file system in a dialog window. The user can use this dialog window to
navigate through the file system to select the desired directory.

tixDirSelectBox ThetixDirSelectBox is similar to the standard Motif(TM)
directory-selection box. It is generally used for the user to choose a direc-
tory. DirSelectBox stores the directories mostly recently selected into a
tixComboBox widget so that they can be quickly selected again.

tixExFileSelectBox The ExFileSelectBox widget is usually embedded in a tix-
ExFileSelectDialog widget. It provides an convenient method for the user
to select files. The style of the ExFileSelectBox widget is very similar to
the standard file dialog in MS Windows 3.1.

tixFileSelectBox The FileSelectBox is similar to the standard Motif file-selection
box. It is generally used for the user to choose a file. FileSelectBox stores
the files mostly recently selected into a ComboBox widget so that they can
be quickly selected again.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixMeter.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixOptionMenu.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixPopupMenu.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixSelect.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixStdButtonBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirTree.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirSelectDialog.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixExFileSelectBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixFileSelectBox.htm

2 TIX WIDGET SET 5

tixFileEntry The FileEntry widget can be used to input a filename. The user can
type in the filename manually. Alternatively, the user can press the button
widget that sits next to the entry, which will bring up a file selection dialog
of the type specified by the-dialogtype option.

2.1.3 Hierachical ListBox

tixHList The HList widget can be used to display any data that have a hierar-
chical structure, for example, file system directory trees. The list entries
are indented and connected by branch lines according to their places in the
hierachy. The entries support images and text, to display with icons.

tixCheckList The CheckList widget displays a list of items to be selected by the
user. CheckList acts similarly to the Tk checkbutton or radiobutton wid-
gets, except it is capable of handling many more items than checkbuttons or
radiobuttons.

tixTree The Tree widget can be used to display hierachical data in a tree form.
The user can adjust the view of the tree by opening or closing parts of the
tree.

2.1.4 Tabular ListBox

tixTList The TList widget can be used to display data in a tabular format. The list
entries of a TList widget are similar to the entries in the Tk listbox widget.
The main differences are (1) the TList widget can display the list entries in
a two dimensional format and (2) you can use graphical images as well as
multiple colors and fonts for the list entries.

2.1.5 Manager Widgets

tixPanedWindow The PanedWindow widget allows the user to interactively ma-
nipulate the sizes of several panes. The panes can be arranged either verti-
cally or horizontally. Each individual pane may have upper and lower limits
of its size. The user changes the sizes of the panes by dragging the resize
handle between two panes.

tixNoteBook The NoteBook widget can be used to display many windows in a
limited space using a notebook metaphor. The notebook is divided into

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixFileEntry.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixHList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixCheckList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixTree.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixTList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixPanedWindow.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixNoteBook.htm

2 TIX WIDGET SET 6

a stack of pages (windows). At one time only one of these pages can be
shown. The user can navigate through these pages by choosing the visual
“tabs" at the top of the NoteBook widget.

tixListNoteBook The ListNoteBook widget is very similar to the TixNoteBook
widget: it can be used to display many windows in a limited space using
a notebook metaphor. The notebook is divided into a stack of pages. At
one time only one of these pages can be shown. The user can navigate
through these pages by choosing the name of the desired page in thehlist
subwidget.

2.1.6 Image Types

Compound Compound image types can be used to create images that consists of
multiple horizontal lines; each line is composed of a series of items (texts,
bitmaps, images or spaces) arranged from left to right.For example, a com-
pound image can be used to display a bitmap and a text string simutaneously
in a Tkbutton(n) widget.

pixmap to create color images from XPM files.

2.1.7 Miscellaneous Widgets

InputOnly The InputOnly widget is to accept inputs from the user, which can be
done with thebind command (UNIX only).

2.1.8 Form Geometry Manager

In addition,Tix augments Tk by providing:

tixForm Tix adds a form geometry manager based on attachment rules.

Wm an addition to the standard TKwmcommand for reparenting windows.

Some of these widgets are implemented by Tix in “C”, such as the HList and
Tree widgets, but in fact, very few new widgets at the "C" level are introduced
by Tix; most are compound widgets of existing Tk widgets. They are all cre-
ated using the simple object oriented programming (OOP) framework for writing
mega-widgets called the Tix Intrinsics.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixListNoteBook.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/compound.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/pixmap.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixInputOnly.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixForm.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/Wm.html

2 TIX WIDGET SET 7

2.2 Tix Commands

Thetix commandsprovide access to miscellaneous elements of Tix’s internal state
and the Tix application context. Most of the information manipulated by these
methods pertains to the application as a whole, or to a screen or display, rather
than to a particular window.

To view the current settings, the common usage is in Tcl:

tix configure

or in Python

import Tix
root = Tix.Tk()
print root.tix_configure()

Method: tix configure ?option
Query or modify the configuration options of the Tix application context. If no
option is specified, returns a list (or dictionary in Python) of all of the available
options. If option is specified with no value, then the method returns a list describ-
ing the one named option (this list will be identical to the corresponding sublist of
the value returned if no option is specified). If one or more option-value pairs are
specified, then the method modifies the given option(s) to have the given value(s);
in this case the method returns an empty string. Option may be any of the config-
uration options.
Method: tix cget option
Returns the current value of the configuration option given byoption. Option may
be any of the configuration options.
Method: tix getbitmap name
Locates a bitmap file of the namename.xpm or name in one of the bitmap di-
rectories (see thetix addbitmapdir method). By usingtix getbitmap ,
you can avoid hard coding the pathnames of the bitmap files in your application.
When successful, it returns the complete pathname of the bitmap file, prefixed
with the character ‘@’. The returned value can be used to configure thebitmap
option of the Tk and Tix widgets.
Method: tix addbitmapdir directory
Tix maintains a list of directories under which thetix getimage and tix
getbitmap methods will search for image files. The standard bitmap directory
is ‘$TIX_LIBRARY/bitmaps’. The tix addbitmapdir method addsdirectory

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tix.htm

2 TIX WIDGET SET 8

into this list. By using this method, the image files of an applications can also be
located using thetix getimage or tix getbitmap method.
Method: tix filedialog ?dlgclass
Returns the file selection dialog that may be shared among different calls from
this application. This method will create a file selection dialog widget when it
is called the first time. This dialog will be returned by all subsequent calls to
tix filedialog . An optional dlgclass parameter can be passed as a string to
specified what type of file selection dialog widget is desired. Possible options are
tix , tixFileSelectDialog or tixExFileSelectDialog .
Method: tix getimage name
Locates an image file of the name ‘name.xpm’, ‘ name.xbm’ or ‘ name.ppm’ in one
of the bitmap directories (see thetix addbitmapdir method above). If more
than one file with the same name (but different extensions) exist, then the image
type is chosen according to the depth of the X display: xbm images are chosen on
monochrome displays and color images are chosen on color displays. By using
tix getimage , you can avoid hard coding the pathnames of the image files
in your application. When successful, this method returns the name of the newly
created image, which can be used to configure theimage option of the Tk and
Tix widgets.
Method: tix option get name
Gets the options maintained by the Tix scheme mechanism.
Method: tix resetoptions newScheme newFontSet ?newScmPrio
Resets the scheme and fontset of the Tix application tonewSchemeand new-
FontSet, respectively. This affects only those widgets created after this call. There-
fore, it is best to call the resetoptions method before the creation of any widgets
in a Tix application.

The optional parameternewScmPriocan be given to reset the priority level of
the Tk options set by the Tix schemes.

Because of the way Tk handles the X option database, after Tix has been
has imported and inited, it is not possible to reset the color schemes and font
sets using thetix configure method. Instead, thetix resetoptions
method must be used.

3 TIX OBJECT ORIENTED PROGRAMMING 9

3 Tix Object Oriented Programming

Tix comes with a simple object oriented programming (OOP) framework, the Tix
Intrinsics, for writing mega-widgets. The Tix Intrinsics is not a general purpose
OOP system and it does not support some features found in general purpose OOP
systems such as [incr Tcl] or Python. However, provides a simple and efficient in-
terface for creating mega-widgets so that you can avoid the complexity and over-
heads of the general purpose OOP extensions.

The hard thing about programming with mega-widgets is to make sure that
each instance you create can handle its own activities. Events must be directed
to the right widget, procedures must act on data that is internal to that widget,
and users should be able to change the options associated with the widget. For
instance, we’ll show an arrow widget that needs to know what direction it’s point-
ing; this requires each instance of the widget to have its own variable. Further-
more, each widget must respond properly to changes requested by the application
programmer during the program’s run.

Arrow Buttons

3.1 Widget Classes and Widget Instances

All the mega-widget classes in Tix, such as TixComboBox and TixControl, are
implemented in the Tix Intrinsics framework. You can write new widget classes
with the Tix Intrinsics. In the next section, We’ll go through all the steps of
creating a new widget class in Tix. We’ll illustrate the idea using a new class
“TixArrowButton" as an example. TixArrowButton is essentially a button that
can display an arrow in one of the four directions.

In this section we will use Tcl syntax, as the procedures described in this
section are currently not exposed to the Python programmer using the Tix module.

3 TIX OBJECT ORIENTED PROGRAMMING 10

3.1.1 Widget Instances

Each widget instance is composed of three integral parts: variables, methods and
component widgets.

Variables Each widget instance is associated with a set of variables. In the ex-
ample of an instance of the TixArrowButton class, we may use a variable
to store the direction to which the arrow is pointing to. We may also use a
variable to count how many times the user has pressed the button.

Each variable can be public or private. Public variables may be accessed
by the application programmer (usually viaconfigure or cget meth-
ods) and their names usually start with a dash (-). They usually are used
to represent some user-configurable options of the widget instance. Private
variables, on the other hand, cannot be accessed by the application program-
mer. They are usually used to store information about the widget instance
that are of interest only to the widget writer.

All the variables of an instance are stored in a global array (dictionary)
that has the same name as the instance. For example, the variables of
the instance.up are stored in the global array.up . The public variable
-direction , which records the direction to which the arrow is point-
ing to, is stored in.up(-direction) . The private variablecount ,
which counts how many times the user has pressed the button, is stored in
.up(count) . In comparison, the same variables of the.down instance
are stored in.down(-direction) and.down(count) .

Methods To carry out operations on the widget, you define a set of methods.
Each method can be declared as public or private. Public methods can be
called by the application programmer. For example, if theTixArrowBut-
ton class supports the public methodsinvoke and invert, the application
programmer can issue the commands to call these method for the widget
instance.up .

.up invert

.up invoke

In contrast, private methods are of interests only to widget writers and can-
not be called by application programmers.

3 TIX OBJECT ORIENTED PROGRAMMING 11

Component Widgets A Tix mega-widget is composed of one or more compo-
nent widgets. The main part of a mega-widget is called the root widget,
which is usually a frame widget that encompasses all other component wid-
gets. The other component widgets are called subwidgets.

The root widget has the same name as the mega-widget itself. In the above
example, we have a mega-widget called.up . It has a root widget which
is a frame widget and is also called.up . Inside .up we have a button
subwidget called.up.button .

Similar to variables and methods, component widgets are also classified
into public and private component widgets. Only public widgets may be
accessed by the application programmer, via thesubwidget method of
each widget instance.

3.2 Widget Class Declaration

The first step of writing a new widget class is to decide the base class from which
the new class. Usually, if the new class does not share any common features
with other classes, it should be derived from theTixPrimitive class. If it
does share common features with other classes, then it should be derived from the
appropriate base class. For example, if the new class support scrollbars, it should
be derived fromTixScrolledWidget ; if it displays a label next to its “main
area", then it should be derived fromTixLabelWidget .

In the case of our newTixArrowButton class, it doesn’t really share any
common features with other classes, so we decide to use the base classTix-
Primitive as its superclass.

3.2.1 Using the tixWidgetClass Command

We can use thetixWidgetClass command to declare a new class. The syntax
is:

tixWidgetClass classCommandName {
-switch value
-switch value
....

}

For example, the following is the declaration section ofTixArrowButton :

3 TIX OBJECT ORIENTED PROGRAMMING 12

tixWidgetClass tixArrowButton {
-classname TixArrowButton
-superclass tixPrimitive
-method {

flash invoke invert
}
-flag {

-direction -state
}
-configspec {

{-direction direction Direction e}
{-state state State normal}

}
-alias {

{-dir -direction}
}
-default {

{*Button.anchor c}
{*Button.padX 5}

}
}

We’ll look at what each option means as the command is described in the
following sections. The first argument fortixWidgetClass is the command
name for the widget class (tixArrowButton). Command names are used to
create widgets of this class. For example, the code:

tixArrowButton .arrow

creates a widget instance.arrow of the classTixArrowButton . Also, the
command name is used as a prefix of all the methods of this class. For example,
the Foo andBar methods of the classTixArrowButton will be written as
tixArrowButton:Foo andtixArrowButton:Bar .

The class name of the class (TixArrowButton) is specified by the-classname
switch inside the main body of the declaration. The class name is used only
to specify options in the TK option database. Notice the difference in the cap-
italization of the class name and the command name of theTixArrowBut-
ton class: both of them have the individual words capitalized, but the command
name (tixArrowButton) starts with a lower case letter while the class name
(TixArrowButton) starts with an upper case letter. When you create your own
classes, you should follow this naming convention.

3 TIX OBJECT ORIENTED PROGRAMMING 13

The-superclass switch specifies the superclass of the new widget. In our
example, we have set it totixPrimitive .

3.3 Writing Methods

After we have declared the new widget class, we can write methods for this class
to define its behavior. Methods are just a special type of TCL procedures and they
are created by theproc command. There are, however, two requirements for
methods. First, their names must be prefixed by the command name of their class.
Second, they must accept at least one argument and the first argument that they
accept must be calledw.

For example, the following is an implementation of the invert method for the
classTixArrowButton :

proc tixArrowButton:invert {w} {
upvar #0 $w data

set curDirection $data(-direction)
case $curDirection {

n {
set newDirection s

}
s {

set newDirection n
}
....

}
}

Notice that the name of the method is prefixed by the command name of the
class (tixArrowButton). Also, the first and only argument that it accepts isw and
the first line it executes isupvar #0 $w data .

The argumentwspecifies which widget instance this method should act upon.
The invert method is used to invert the direction of the arrow. Therefore, it
should examine the variable.up(-direction) , which stores the current di-
rection of the instance.up , and modify it appropriately. Theupvar #0 $w
data tells the intepreter that the array data should be an alias for the global array
whose name is stored in$w. We will soon see how the widget’s methods use the
data array.

3 TIX OBJECT ORIENTED PROGRAMMING 14

3.3.1 Declaring Public Methods

All the methods of a class are by default private methods and cannot be accessed
by the application programmer. If you want to make a method public, you can
include its name in the-method section of the class declaration. In ourTixAr-
rowButton example, we have declared that the methodsflash , invert and
invoke are public methods and they can be accessed by the application program-
mer. All other methods of theTixArrowButton class will be private.

3.4 Standard Initialization Methods

Each new mega-widget class must supply three standard initialization methods.
When an instance of a Tix widget is created, three methods will be called to ini-
tialize this instance. The methods areInitWidgetRec , ConstructWidget
andSetBindings and they will be called in that order. The following sections
show how these methods can be implemented.

3.4.1 The InitWidgetRec Method

The purpose of theInitWidgetRec method is to initialize the variables of the
widget instance. For example, the following implementation oftixArrowBut-
ton:InitWidgetRec sets the count variable of each newly created instance
to zero.

proc tixArrowButton:InitWidgetRec {w} {
upvar #0 $w data

set data(count) 0
}

Chaining Methods

The above implementation is not sufficient because ourTixArrowButton class
is derived fromTixPrimitive . The class derivation in Tix is basically an is-
a relationship:TixArrowButton is a TixPrimitive . TixPrimitive
defines the methodtixPrimitive:InitWidgetRec which sets up the in-
stance variables of every instance ofTixPrimitive . Since an instance of
TixArrowButton is also an instance ofTixPrimitive , we need to make

3 TIX OBJECT ORIENTED PROGRAMMING 15

sure that the instance variables defined byTixPrimitive are also properly ini-
tialized. The technique of calling a method defined in a superclass is called the
chaining of a method.

The tixChainMethod command will automatically find a superclass that
defines the method we want to chain and calls this method for us. For example:

proc tixArrowButton:InitWidgetRec {w} {
upvar #0 $w data

tixChainMethod $w InitWidgetRec
set data(count) 0

}

Notice the order of the arguments fortixChainMethod : the name of the in-
stance,$w, is passed before the method we want to chain,InitWidgetRec .

3.4.2 The ConstructWidget Method

TheConstructWidget method is used to create the components of a widget
instance. In the case ofTixArrowButton , we want to create a new button
subwidget, whose name isbutton , and use a bitmap to display an arrow on
this button. Assuming the bitmap files are stored in the files up.xbm, down.xbm,
left.xbm and right.xbm, the string substitution@$data(-direction).xbm
will give us the appropriate bitmap depending on the current direction option of
the widget instance.

proc tixArrowButton:ConstructWidget {w} {
upvar #0 $w data

tixChainMethod $w ConstructWidget

set data(w:button) \
[button $w.button \
-bitmap @$data(-direction).xbm]

pack $data(w:button) \
-expand yes -fill both

}

The tixArrowButton:ConstructWidget method shown above sets
the variabledata(w:button) to be the pathname of the button subwidget.

3 TIX OBJECT ORIENTED PROGRAMMING 16

As a convention of the Tix Intrinsics, we must declare a public subwidgetswid
by storing its pathname in the variabledata(w:swid) .

3.4.3 The SetBindings Method

In your interface, you want to handle a lot of events in the subwidgets that make up
your mega-widget. For instance, when somebody presses the button in aTixAr-
rowButton widget, you want the button to handle the event. TheSetBind-
ings method is used to creates event bindings for the components inside the
mega-widget. In our TixArrowButton example, we use the bind command to
specify that the methodtixArrowButton:IncrCount should be called each
time when the user presses the first mouse button. As a result, we can count the
number of times the user has pressed on the button.

proc tixArrowButton:SetBindings {w} {
upvar #0 $w data

tixChainMethod $w SetBindings

bind $data(w:button) <1> \
"tixArrowButton:IncrCount $w"

}

proc tixArrowButton:IncrCount {w} {
upvar #0 $w data

incr data(count)
}

3.5 Declaring and Using Variables

The private variables of a widget class do not need to be declared. In fact they
can be initialized and used anywhere by any method. Usually, however, general
purpose private variables are initialized by theInitWidgetRec method and
subwidget variables are initialized in theConstructWidget method.

We have seen in thetixArrowButton:InitWidgetRec example that
the private variabledata(count) was initialized there. Also, the private vari-
abledata(w:button) was initialized intixArrowButton:ConstructWidget

3 TIX OBJECT ORIENTED PROGRAMMING 17

and subsequently used intixArrowButton:SetBindings . In contrast, pub-
lic variables must be declared inside the class declaration. The following argu-
ments are used to declare the public variables and specify various options for
them:

-flag As shown in the class declaration in the figure, the -flag argument declares
all the public variables of theTixArrowButton class to be -direction and
-state.

-configspecWe can use the -configspec argument to specify the details of each
public variable. For example, the following declaration:

-configspec {
{-direction direction Direction e}
{-state state State normal}

}

specifies that the -direction variable has the resource name direction and
resource class Direction; its default value ise. The application program-
mer can assign value to this variable by using the -direction option in the
command line. The declaration of -state installs similar definitions for that
variable.

3.5.1 Initialization of Public Variables

When a widget instance is created, all of its public variables are initialized by
the Tix Intrinsics before theInitWidgetRec method is called. Therefore,
InitWidgetRec and any other method of this widget instance are free to as-
sume that all the public variables have been properly initialized and use them as
such.

The public variables are initialized by the following criteria:

Step 1 If the value of the variable is specified by the creation command, this value
is used. For example, if the application programmer has created an instance
in the following way:

tixArrowButton .arr -direction n

The valuen will be used for the -direction variable.

3 TIX OBJECT ORIENTED PROGRAMMING 18

Step 2 if step 1 fails but the value of the variable is specified in the options
database, that value is used. For example, if the user has created an instance
in the following way:

option add *TixArrowButton.direction w
tixArrowButton .arr

The valuewwill be used for the -direction variable.

Step3 if step 2 also fails, the default value specified in the -configspec section of
the class declaration will be used.

You can use a type ckecker procedure to check whether the user has supplied
a value of the correct type for a public variable. The type checker is specified in
the -configspec section of the class declaration after the default value.

3.5.2 Public Variable Configuration Methods

After a widget instance is created, the user can assign new values to the public
variables using the configure method. For example, the following code changes
the -direction variable of the.arr instance ton.

.arr configure -direction n

In order for configuration to work, you have to define a configuration method
that does what the programmer expects. The configuration method of a public
variable is invoked whenever the user calls the configure method to change the
value of this variable. The name of a configuration method must be the name
of the public variable prefixed by the creation command of the class and :config.
For example, the name configuration method for the -direction variable of the
TixArrowButton class istixArrowButton:config-direction . The
following code implements this method:

proc tixArrowButton:config-direction \
{w value} {

upvar #0 $w data

$data(w:button) config \
-bitmap @$value.xbm

}

3 TIX OBJECT ORIENTED PROGRAMMING 19

Notice that whentixArrowButton:config-direction is called, the
value parameter contains the new value of the -direction variable butdata(-
direction) contains the old value. This is useful when the configuration
method needs to check the previous value of the variable before taking in the
new value.

If a type checker is defined for a variable, it will be called before the configu-
ration method is called. Therefore, the configuration method can assume that the
type of the value parameter is got is always correct.

If you do not need to override the value, you don’t need to return anything
from the configuration method. In this case, the Tix Intrinsics will assign the new
value to the instance variable for you.

For efficiency reasons, the configuration methods are not called during the in-
tialization of the public variables. If you want to force the configuration method to
be called for a particular public variable, you can specify it in the-forcecall
section of the class declaration. In the following example, we force the configura-
tion method of the -direction variable to be called during intialization:

-forcecall {
-direction

}

4 USING TIX WITH PYTHON 20

4 Using Tix with Python

As we have seen, Tix provides a rich widget set for designing user interfaces,
and a simple object oriented framework for extending the widget repertoire with
mega-widgets.

The Tkinter module is extended by Tix under Python by the moduleTix.py .
The Tix widgets are represented by a class hierarchy in Python with proper inheri-
tance of base classes. We set up an attribute access function so that it is possible to
access subwidgets in a standard fashion, usingw.ok[’text’] = ’Hello’
rather than

w.subwidget(’ok’)[’text’] = ’Hello’

whenw is aStdButtonBox . We can even dow.ok.invoke() becausew.ok
is subclassed from the Button class if you go through the proper constructors.

In our example from the previous section, we would make our new mega-
widget available to Python by extending the Tix module with the following class:

class ArrowButton(TixWidget):
"""ArrowButton - Demo Compound Widget.
Subwidget Class
------ ---
button Button
"""
def __init__(self, master, cnf={}, **kw):

TixWidget.__init__(self, master,
’tixArrowButton’,
[’options’], cnf, kw)

self.subwidget_list[’button’] =
_dummyButton(self, ’button’)

def flash(self):
self.tk.call(self._w, ’flash’)

def invert(self):
self.tk.call(self._w, ’invert’)

def invoke(self):
self.tk.call(self._w, ’invoke’)

4 USING TIX WITH PYTHON 21

4.1 Freezing Tix Programs

Freeze ($PYTHONHOME/tools/freeze/freeze.py) make it possible to
ship arbitrary Python programs to people who don’t have Python. The shipped
file (called a “frozen" version of your Python program) is an executable, so this
only works if your platform is compatible with that on the receiving end. The
shipped file contains a Python interpreter and large portions of the Python run-
time. Some measures have been taken to avoid linking unneeded modules, but the
resulting binary is usually not small.

The Python source code of your program (and of the library modules written in
Python that it uses) is not included in the binary – instead, the compiled byte-code
is incorporated. This gives some protection of your Python source code, though
not much – a disassembler for Python byte-code is available in the standard Python
library. At least someone running “strings" on your binary won’t see the source.

With Python 2.x, is is possible to freeze Tix programs under Unix and Win-
dows. Currently you must also deliver your frozen program with a set of Tcl/Tk/Tix
library files. The best way to ship a frozen Tkinter program is to decide in ad-
vance where you are going to place the Tcl/Tk/Tix library files in the distributed
setup, and then declare these directories in your frozen Python program using the
TCL_LIBRARY, TK_LIBRARY and TIX_LIBRARY environment variables.

For example, assume you will ship your frozen program in the directory
<root>/bin/windows-x86 and will place your Tcl/Tk/Tix library files in
<root>/lib/tcl8.3 in <root>/lib/tk8.3 and<root>/lib/tix8.1
respectively. Then placing the following lines in your frozen Python script before
importing Tkinter or Tix would set the environment correctly for Tcl/Tk/Tix:

import sys, os, os.path
Parent = os.path.dirname(os.getcwd())
RootDir = os.path.dirname(Parent)

if os.name == "nt":
sys.path = [”, ’..\\..\\lib\\python-2.2’]
lib = RootDir + ’\\lib\\’
os.environ[’TCL_LIBRARY’] = lib + ’tcl8.3’
os.environ[’TK_LIBRARY’] = lib + ’tk8.3’
os.environ[’TIX_LIBRARY’] = lib + ’tix8.1’

elif os.name == "posix":
sys.path = [”, ’../../lib/python-2.2’]
lib = RootDir + ’/lib/’

4 USING TIX WITH PYTHON 22

os.environ[’TCL_LIBRARY’] = lib + ’tcl8.3’
os.environ[’TK_LIBRARY’] = lib + ’tk8.3’
os.environ[’TIX_LIBRARY’] = lib + ’tix8.1’

This also adds<root>/lib/python-2.2 to your Python path for any
Python files such as_tkinter.pyd you may need.

Note that the dynamic libraries (such as tcl83.dll tk83.dll python22.dll under
Windows, or libtcl8.3.so and libtcl8.3.so under Unix) are required at program
load time, and are searched by the operating system loader before Python can be
started. Under Windows, the environment variablePATHis consulted, and under
Unix, it may be the the environment variableLD_LIBRARY_PATHand/or the
system shared library cache (ld.so). An additional preferred directory for finding
the dynamic libraries is built into the .dll or .so files at compile time - see the
LIB_RUNTIME_DIR variable in the Tcl makefile. The OS must find the dynamic
libraries or your frozen program won’t start. Usually we make sure that the .so or
.dll files are in the same directory as the executable, but this may not be foolproof.

A workaround to installing your Tcl library files with your frozen executable
would be possible, by freezing the Tcl/Tk/Tix code into the dynamic libraries
using the Tix Stand-Alone-Module (SAM) module. This is currently untested,
but the maintainers of Tix would welcome feedback on this point.

There are some caveats using frozen Tkinter applications:

• Under Windows if you use the -s windows option (recommended), writing
to stdout or stderr is an error. This makes debugging very dificult. If pos-
sible, develop and freeze first under Unix, where you can debug to stdout.
Then make sure the frozen application never writes to stdout or stderr and
try freezing under Windows.

• The Tcl[info nameofexecutable] will be set to where the program
was frozen, not where it is run from.

• The global variables argc and argv do not exist.

4 USING TIX WITH PYTHON 23

References

Web Pages

Tix http://tix.sourceforge.net

Python http://www.python.org

Tk/Tcl http://dev.scriptics.com

Tkinter http://www.python.org

Tkinter3000 http://tkinter.effbot.org

http://tix.sourceforge.net
http://www.python.org
http://dev.scriptics.com
http://www.python.org
http://tkinter.effbot.org

4 USING TIX WITH PYTHON 24

Tix Class Structure

The Class Hierarchy of Tix Widgets

	Introduction
	Installing Tix
	Using Tix with Python

	Tix Widget Set
	Tix Widgets
	Tix Commands

	Tix Object Oriented Programming
	Widget Classes and Widget Instances
	Widget Class Declaration
	Writing Methods
	Standard Initialization Methods
	Declaring and Using Variables

	Using Tix with Python
	Freezing Tix Programs

